A comparison of methanobactins from Methylosinus trichosporium OB3b and Methylocystis strain Sb2 predicts methanobactins are synthesized from diverse peptide precursors modified to create a common core for binding and reducing copper ions.

نویسندگان

  • Benjamin D Krentz
  • Heidi J Mulheron
  • Jeremy D Semrau
  • Alan A Dispirito
  • Nathan L Bandow
  • Daniel H Haft
  • Stéphane Vuilleumier
  • J Colin Murrell
  • Marcus T McEllistrem
  • Scott C Hartsel
  • Warren H Gallagher
چکیده

Methanobactins (mb) are low-molecular mass, copper-binding molecules secreted by most methanotrophic bacteria. These molecules have been identified for a number of methanotrophs, but only the one produced by Methylosinus trichosporium OB3b (mb-OB3b) has to date been chemically characterized. Here we report the chemical characterization and copper binding properties of a second methanobactin, which is produced by Methylocystis strain SB2 (mb-SB2). mb-SB2 shows some significant similarities to mb-OB3b, including its spectral and metal binding properties, and its ability to bind and reduce Cu(II) to Cu(I). Like mb-OB3b, mb-SB2 contains two five-member heterocyclic rings with associated enethiol groups, which together form the copper ion binding site. mb-SB2 also displays some significant differences compared to mb-OB3b, including the number and types of amino acids used to complete the structure of the molecule, the presence of an imidazolone ring in place of one of the oxazolone rings found in mb-OB3b, and the presence of a sulfate group not found in mb-OB3b. The sulfate is bonded to a threonine-like side chain that is associated with one of the heterocyclic rings and may represent the first example of this type of sulfate group found in a bacterially derived peptide. Acid-catalyzed hydrolysis and decarboxylation of the oxazolone rings found in mb-OB3b and mb-SB2 produce pairs of amino acid residues and suggest that both mb-OB3b and mb-SB2 are derived from peptides. In support of this, the gene for a ribosomally produced peptide precursor for mb-OB3b has been identified in the genome of M. trichosporium OB3b. The gene sequence indicates that the oxazolone rings in mb-OB3b are derived from the combination of a cysteine residue and the carbonyl from the preceding residue in the peptide sequence. Taken together, the results suggest methanobactins make up a structurally diverse group of ribosomally produced, peptide-derived molecules, which share a common pair of five-member rings with associated enethiol groups that are able to bind, reduce, and stabilize copper ions in an aqueous environment.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Comparison of the Kinetics and Spectral Properties of AuCl4- Binding by Methanobactins from Methylosinus trichosporium OB3b and Methylocystis Strain SB2: Evidence of Exciton Disruption between Intramolecular Chromophores

...... ......................................................................................................... 13 Introduction................................................................................ 14 Materials and Methods................................................................... 16 Results.........................................................................................

متن کامل

Methanobactin from Methylocystis sp. strain SB2 affects gene expression and methane monooxygenase activity in Methylosinus trichosporium OB3b.

Methanotrophs can express a cytoplasmic (soluble) methane monooxygenase (sMMO) or membrane-bound (particulate) methane monooxygenase (pMMO). Expression of these MMOs is strongly regulated by the availability of copper. Many methanotrophs have been found to synthesize a novel compound, methanobactin (Mb), that is responsible for the uptake of copper, and methanobactin produced by Methylosinus tr...

متن کامل

Detoxification of mercury by methanobactin from Methylosinus trichosporium OB3b.

Many methanotrophs have been shown to synthesize methanobactin, a novel biogenic copper-chelating agent or chalkophore. Methanobactin binds copper via two heterocyclic rings with associated enethiol groups. The structure of methanobactin suggests that it can bind other metals, including mercury. Here we report that methanobactin from Methylosinus trichosporium OB3b does indeed bind mercury when...

متن کامل

Variations in methanobactin structure influences copper utilization by methane-oxidizing bacteria.

Methane-oxidizing bacteria are nature's primary biological mechanism for suppressing atmospheric levels of the second-most important greenhouse gas via methane monooxygenases (MMOs). The copper-containing particulate enzyme is the most widespread and efficient MMO. Under low-copper conditions methane-oxidizing bacteria secrete the small copper-binding peptide methanobactin (mbtin) to acquire co...

متن کامل

The soluble methane monooxygenase gene cluster of the trichloroethylene-degrading methanotroph Methylocystis sp. strain M.

In methanotrophic bacteria, methane is oxidized to methanol by the enzyme methane monooxygenase (MMO). The soluble MMO enzyme complex from Methylocystis sp. strain M also oxidizes a wide range of aliphatic and aromatic compounds, including trichloroethylene. In this study, heterologous DNA probes from the type II methanotroph Methylosinus trichosporium OB3b were used to isolate souble MMO (sMMO...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Biochemistry

دوره 49 47  شماره 

صفحات  -

تاریخ انتشار 2010